INTRODUCTION
Measles a highly contagious and infectious disease is the main cause of child mortality and morbidity across the world especially in developing countries.\(^1\) Measles infection has been controlled by vaccination in developed countries like United States and Europe.\(^2\) However, measles is still affecting the developing countries due to insufficient coverage and improper handling of vaccines.\(^3\)

Immunization in children against vaccine preventable diseases (VPDs) has been started by WHO in 1974, and in Pakistan it was initiated during 1978.\(^4\) In general the vaccine coverage against vaccine preventable diseases in Pakistan ranged between 56–88\% in 2011 and 2012, which greatly varied among various populations of different provinces.\(^5\)

Number of measles outbreaks with high morbidity and mortality has been observed in various parts of Pakistan. These cases of measles appeared in different cities of Sindh Province by the end of 2012, which later spread in other cities of Punjab and Khyber Pakhtunkhwa.\(^6,7\)

The main factors of these outbreaks were vaccination failure due to several reasons i.e. malnutrition and vitamin-A deficiencies, mishandling of vaccines, low vaccination coverage, poor vaccination facilities in remote and rural areas, and lack of immunization awareness among parents due to lower levels of education in various areas of the country.\(^6-8\)

In developing countries the measles attack rates are high among children greater than twelve months of age with more severity in vitamin A deficient children. Pneumonia is the commonest complication of measles.\(^9\)

In Pakistan measles vaccine was given in a single dose at nine months,\(^10\) but later a booster dose at 15 months was introduced in Expanded Program on Immunization (EPI) in 2009.\(^11\) Keeping in view the measles immunization strategy, measles outbreak in Pakistan, lack of immunization awareness and poor vaccination facilities in remote and rural areas, the present community based study was carried out in rural areas of Peshawar to determine the occurrence of measles in children inspite of vaccination.

MATERIAL AND METHODS
This community based descriptive cross-sectional study was carried out in rural area of Peshawar during September 2013 to September 2014 among 385 children of age range 1.5–3 years. It was a community based household study in which atleast 90 children from each village Budhi, Dalazak, Jhagra and Timerpura were included. Samples were
DISCUSSION

The study was carried out in rural community to find out measles morbidity cases among children inspite of vaccination and to determine measles vaccination coverage rate in rural area of city Peshawar. Measles coverage rate in Pakistan has been reported less than 80% in USAID research and development report 2012. This study showed almost 94% coverage rate of measles vaccine at 9 month but its coverage decreased almost 50% at 15 months, possibly because of long follow-up vaccination gap. In a similar kind of study in Karachi Pakistan, 9 month vaccination coverage was 78% while 15 month measles vaccination coverage was 12%. After couple of years continuous intervention has raised the coverage rate but still long way to go in case of 15 month measles dose. Parents showed negligence due to long 6 months vaccination gap for second measles vaccine dose. Present study showed that 6.37%
children had measles inspite of single dose measles vaccination. However in female vaccinated children the infection rates were high (6.38%) inspite of 15 month booster dose but in male vaccinated children the infection rate was seen to decline to 3.06% (Table-3). The main difference is the possibility of nutritional fulfilment of male children which results in better immunity of male child as compared to female child. The effect of supplementary vaccination in children was determined by testing in two different cities of Punjab. A total of 871/1053 (82.71%) children from Faisalabad and 647/813 (79.58%) children from Jhang were found vaccinated either with single or dual dose of measles vaccination. Out of these 264 blood samples from vaccinated and 100 samples from non-vaccinated children were collected randomly and analysed for the presence of anti-measles IgG antibodies. Only 73.48% of vaccinated children developed humeral immune response as detected through ELISA. The prevalence of anti-measles IgG antibodies from samples collected from male children was higher as compared to female children. This indicated that the protection against measles was not optimum according to WHO standards. In another study it has been reported that risk of measles and level of anti-measles IgG antibodies was observed high in female children than male.

Effectiveness of measles vaccine mainly depends on temperature, it is the most heat labile vaccine therefore measles vaccine must be stored within the temperature range recommended by manufacturers (2–8 °C) to ensure that it remains potent. The vaccination cold chain refers to all the materials, equipment and procedures involved in maintaining vaccine as according to manufacturer instruction. In June 2009 vaccine storage related clinical audit in general practices and NHS trusts was carried out and final report was shared with National patient safety agency (NPSA) which showed that childhood vaccines had been stored incorrectly in a general practices which had resulted in an extensive vaccination recall. This study explored the importance of place of vaccination in rural areas of Pakistan where power supply remained shed off for more than 12 hours daily. Maintaining the cold chain in these situations is very difficult. Study showed that 125 children took both measles vaccination doses from EPI centres, among them 8 children got infected from measles in spite of vaccination. EPI centres found in rural areas are badly facing the cold chain problem as compared to hospitals especially in summers because of long duration of load shedding. Another similar study showed that 39% patients admitted in a hospital of Peshawar were measles vaccinated. It raised question on the efficacy and quality of measles vaccines.

This study has some limitations like its non-exclusion of the undeveloped immune cases due to nutritional deficiencies in children and measles mortality cases to find the exact figure of measles occurrence in children of rural community inspite of vaccination.

It is therefore recommended that reduction in measles cases in vaccinated children can only be achieved by properly maintaining the cold chain according to manufacturer instruction. It is also necessary to supply certified vaccine with manufacturer name, lot number and quality control with vaccine potency certificate. The EPI centres must be instructed to follow the quality control while handling measles vaccine. A multicentre community based study will be more fruit-full and meaningful to address the exact mortality and morbidity cases of measles and sero-prevalence of measles antibody in nutritional deficient vaccinated children.

CONCLUSION

Measles is common in vaccinated children, an optimum response to measles vaccination has not been observed. The occurrence of measles among vaccinated children and low coverage rate of second dose of measles vaccine raises many questions about vaccination program and vaccine efficacy. Further studies are needed to evaluate the influence of other predisposing factors like vaccine quality, its supply, cold chain, handling, nutritional status of children and technical approach on measles vaccine efficacy.

AUTHOR’S CONTRIBUTION

AK: Conceptualization of study design, data collection, write up, corresponding author. OU: Proof reading, data interpretation. A: Data collection. IA: Data analysis

ACKNOWLEDGEMENT

The Authors are grateful to the PMRC centre Khyber Medical College staffs for offering there valuable time and technical expertise for accomplishment of this project. Special thanks to Medical officer Dr. Rabia of basic health Unit village Bhudni for facilitating our staffs to approach community.

REFERENCES

Vaccine 2011;29(18):3419–23.

Address of Correspondence:
Aftab Khan, PMRC Research Centre, Khyber Medical College, Peshawar-Pakistan
Cell: +92 331 3854713
Email: aftab_khan510@yahoo.com