CASE REPORT
METASTATIC RADIOIODINE AVID STRUMA OVARIi ASSOCIATED WITH PSEUDO-MEIGS’ SYNDROME

Department of Nuclear Medicine, **Department of Surgical Oncology, ***Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore-Pakistan, **Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah-Saudi Arabia

We report a case of 21 years old lady who presented with ascites, left adnexal mass and elevated CA-125. With suspicion of ovarian malignancy, she underwent left salpingo-oophorectomy with omental biopsy. Histopathology revealed: ‘follicular variant of papillary thyroid carcinoma arising in struma ovarii’ with metastatic papillary thyroid carcinoma in omental and peritoneal nodules. Patient underwent total thyroidectomy followed by radioactive iodine therapy for metastatic omental and peritoneal disease. Post-therapy whole body scan, revealed extensive I-131 avid disease metastatic disease involving the chest, abdomen, pelvis and the musculoskeletal system. Patient was treated with multiple doses of high dose radioactive iodine. She became symptom free on supra-physiologic doses of oral thyroxin however her high thyroglobulin levels and residual radioiodine avid metastatic disease required further treatment. In literature a few cases of struma ovarii have been reported with elevated CA-125 and associated pseudo-Meigs’ syndrome. The treatment for this rare disease is still not standardized and poses a therapeutic challenge. Our case emphasizes the need for a multidisciplinary approach for managing struma ovarii.

Keywords: Struma ovarii, Meigs syndrome, Pseudo-Meigs’ syndrome, Papillary thyroid carcinoma, Radioiodine
tissue. However, histopathology from diaphragmatic, cul de sac, peritoneal nodules and omental fat was positive for metastatic papillary thyroid carcinoma (follicular variant).

After thyroidectomy patient underwent metastatic work up. Diagnostic radioactive iodine (I-131) whole body scan (Dx WBS) was acquired with low dose radioactive iodine [Infinia II GE]. The scan revealed thyroid remnant with no evidence of I 131 avid metastasis (Figure-2). CT of the abdomen and the pelvis also did not reveal any morphological nodal or visceral disease.

Based on histopathologically proven peritoneal metastases the patient was treated with radioactive iodine ablation therapy (I1311150 mCi). Serum thyroglobulin levels at point of therapy were 10.3 ng/ml, invalidated by elevated antithyroglobulins (384 IU/ml). Contrary to the Dx WBS, post therapy whole body scan (Rx WBS) at day 7 revealed multifocal I-131 avid metastatic disease involving skull, bilateral forearms, chest and abdomen (Figure-3). Following radioiodine therapy patient was started on oral thyroxin with the objective to suppress TSH (between 0.01–0.1 IU). Patient’s disease responded to high dose radioiodine therapy and whole body SPECT-CT scan [Symbia T16 Siemens] acquired after second radioiodine therapy revealed residual I131 avid pulmonary nodules (Figure-4). In view of persistent I-131 avid metastatic disease patient has been treated with multiple dose of radioiodine (cumulative dose 450 mCi). Clinically she became symptom free; on 3 monthly follow up while taking thyroxin in supra-physiologic doses.

DISCUSSION

Struma ovarii rarely displays malignant potential. Association with Pseudo-Meigs syndrome is further rare and thus becomes a therapeutic challenge.2,5,8

Hysterectomy and bilateral salpingo-oophorectomy is the main treatment for struma ovarii. Since 95% of struma ovarii are benign and can occur in women of child bearing age it is critical to have a multidisciplinary approach. In the case of malignant and metastatic struma ovarii patient is to be treated on the lines of primary differentiated thyroid cancer.9 The predominant benign outcome with up to 5% malignant potential poses a preoperative radiological challenge. Ultrasound, CT and MRI have been used to decipher benign from malignant with a few distinct features and considerable overlapping findings as well.10 For the use of radioactive iodine total thyroidectomy is a prerequisite.

In literature a few case reports and reviews are available as a reference to plan the management of struma ovarii associated with thyroid malignancy. Devaney et al. studied 15 such cases with differentiated thyroid carcinoma; no recurrence was reported during the average follow-up period of 7.3 years, although no adjuvant radiiodine therapy was offered to these patients.11

DeSimone et al. have reported a literature review of 24 patients with struma ovarii and studied the use of radioactive iodine.12 In this review 4 patients were treated with thyroidectomy and radioactive iodine as adjuvant treatment and all remained disease free.

Seven patients received radioactive iodine for recurrent disease out of which 4 remained disease free while 3 developed further recurrences. DeSimone et al recommended that ‘thyroidectomy and radioactive iodine should be considered in the first line of management for malignant struma ovarii’

Our case also benefitted from total thyroidectomy followed by multiple doses of radioactive Iodine. Malignant struma ovarii is a rare disease. Multi-organ involvement warrants a multimodality approach from the beginning for better clinical outcome.

Figure-1: A: Thyroid transcription factor 1 (TTF-1) positive in tumour cells. B: 200X Papillary thyroid carcinoma C: 40X papillary thyroid carcinoma
Figure 2: Diagnostic I-131 scan with whole body spot views in anterior acquisition shows foal avid uptake by the thyroid remnant. Physiological tracer distribution to the gastrointestinal tract and urinary bladder is seen.

Figure 3: Post radioiodine ablation therapy (150mCi) whole body scan with anterior and posterior views acquired at day 7 showing multifocal I-131 avid disease involving skull, bilateral forearms, chest and abdomen.
Figure-4: Post second radioiodine ablation therapy (200 mCi) whole body planar, fusion SPECT-CT coronal whole body and axial chest views show I-131 avid 8mm solitary pulmonary nodule in the basal segment of right lung. Physiological tracer distribution to the salivary glands, gastrointestinal tract and urinary bladder is seen.

REFERENCES

Address for Correspondence:
Dr. Humayun Bashir, 7A, Block R-3, MA Johar Town, Lahore-Pakistan
Cell: +92 302 447 4042
Email: humayunb@skm.org.pk

http://www.jamc.ayubmed.edu.pk