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Nuclear Factor- kappa B (NF-κB) is an essential transcription factor that not only modulates cellular 
responses to stress but also plays a pivotal role in inflammation, immunity, cell cycle growth and 
survival. NF-κB-regulated genes have been documented to be involved in cellular proliferation and 
invasion along with tumour related angiogenesis and lymphangiogenesis. Dysregulation of NF-κB 
associated pathways are seen in multiple malignancies. Its constitutive activation in the clinically 
aggressive and prognostically poor ER-negative, Her2-neu positive and inflammatory breast cancer 
could formulate the basis for its evolution as a potential prognostic and therapeutic target.  
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Nuclear Factor-kappa B (NF-κB) 
Pathogenesis of disease process evolves around aberrant 
activation and expression of genes leading to generation 
of abnormal products culminating in initiation and 
progression of the disease process.1–3 This genetic  
transformation is in part controlled by NF-κB3 an 
essential transcription factor that not just only controls 
cellular responses to stress but also plays a pivotal role 
in inflammation, immunity, cell-cycle/growth, survival 
and apoptosis4‒8 by directly influencing the gene 
expression of the growth factors,  chemokines, cell 
adhesion molecules and some acute phase proteins2,3 
involved in these processes.  

The NF-κB family consists of five mammalian 
members p50, p52, p65(relA) c-rel and relB that exist as 
‘homo’ or ‘hetero’ dimers, with the most abundant form 
being p50/p65 heterodimer.9 The heterodimer of p65(rel 
A) and p50 is the predominant active NF-κB  complex 
in epithelial cells.10‒15 This transcription factor was 
discovered in immune cells and believed to be involved 
primarily in the transmission of inflammatory signals by 
modulation of the expression of immune response 
genes.10 Later, NF-κB  was discovered to be present in 
most cell types in an inactive state, complexed  with the 
inhibitory κB protein (IκB ) in the cytoplasm.11,16 

Activation of NF-κB 
In the resting cells NF-κB is cytoplasmically 
sequestered in a latent, inactive form bound to family of 
molecules, the inhibitors of κB or IκB proteins.9,15  
Cellular stimulation by tumour necrosis factor alpha 
(TNFα) or its activation by a large spectrum of inducers 
comprising  diverging molecules, such as cytokines, 
mitogens, growth factors,  bacterial and viral gene, 
ultraviolet radiation and  inhaled occupational particles11 

leads to activation of certain  kinases, the inhibitory κB 
kinase (IκKs), which phosphorylate IκBs, selecting them 
for targeted   degradation. The degraded IκBs then 
releases the sequestered NF-κB dimers which are free to 
translocate into the nucleus. Once inside the nucleus 
these bind to specific DNA sequences in the promoter or 

enhancer regions of target genes and transactivate 
responsive genes, including those for IκB and the zinc 
finger protein A20. The phosphorylated IκB is rapidly 
modified by ubiquitinylation and degraded in 
proteasomes.10‒14,17,18 

Newly synthesized IκB translocates to the 
nucleus, attaches to NF-κB dimers and eliminates them 
from the nucleus, while A20 protein stays in cytoplasm 
and suppresses the activity of TNFα receptors.19 Thus 
the NF-κB system comprises a minimum of two 
negative feedback loops, one involving cytoplasmic 
sequestration mediated by IκB and another involving 
A20 protein.15 

Functions of NF-κB  
Activated NF-κB causes induction of multiple cellular 
functions comprising increased cell proliferation and 
decreased apoptosis10‒14 altered intra cellular 
adhesions,20‒24 recruitment of inflammatory cells,25,26 
amplification of primary pathogenetic  signals,27 and 
commencement or acceleration of tumorigenesis.28 

NF-κB and p-53 
The expression of genes regulated by NF-κB is tightly 
integrated and coordinated with the activities of many 
other signalling and transcription-factor pathways 
including the p53 signalling pathway.29‒33 The 
independent NF-κB signalling pathway has been studied 
extensively, the existence and mechanisms of the 
interactions between the NF-κB pathway and other 
signalling pathways are yet not completely deciphered.15  

The tumour suppressor and transcription factor 
p53 is the major modulator of cellular stress responses, 
and its activation is preceded by cellular apoptosis in 
many cell types. A role of NF-κB in p53 mediated 
apoptosis has been documented. Carsten et al evaluated 
role of NF-κB in p53-mediated neuron death. Exposure 
of neurons to fatal stress activates p53 and disrupts the 
cascade of NF-κB mediated survival signalling. 
Inhibitors of p53 provide marked neuro-protective 
effects because they block p53-mediated induction of 
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cellular death and simultaneously augment NF-κB-
induced survival signalling.34 

NF-κB and apoptosis 
NF-κB has been documented to have a protective role 
against apoptosis primarily by up-regulation of genes 
encoding anti-apoptotic products comprising 
interleukins such as IL-1, IL-2, IL-6 along with a wide 
array of colony stimulating factors, e.g., macrophage 
colony-stimulating factor (M-CSF), granulocyte colony 
stimulating factor (G-CSF), granulocyte-macrophage 
colony-stimulating factor (GM-CSF) and also 
superoxide dismutase and the zinc finger protein A20.1‒3 

The inter relationship of NF-κB  and other  antiapoptotic 
genes yet remains to be elaborated. 

NF-κB and malignancy 
There is increasing evidence implicating a dysregulation 
of NF-κB-associated pathways in multiple 
malignancies, including breast cancer14,35‒40 where  NF-
κB-regulated genes are being proven to be involved in 
cellular proliferation and invasion along with tumour 
related  angiogenesis and  lymphangiogenesis. An 
element of inflammation is also an accompanying 
component.37,41-42  

According to Miron et al the activated NF-κB 
dimers play a pivotal role in breast cancer and other 
malignancies by enhancing cellular proliferation and 
causing diminished apoptosis, but the basic trigger that 
initiated the activation of NF-κB is yet unclear. 
Alterations in genes encoding NF-κB/Rel/IkB proteins 
have been documented mostly in lymphoid neoplasms. 
These comprise chromosomal rearrangements, 
amplifications and mutations that in some cases lead to 
production of truncated abnormal proteins that localise 
to the nucleus and activate transcription. In breast 
cancer, however the precise mechanism of NF-κB 
activation still remains unclear, but its role in cancer 
progression has been delimited.9 

NF-κB and breast cancer 
Activation of NF-κB in human breast cancer is found 
mostly in the ER-negative subtype of cancers, 
specifically those that demonstrate members of the EGF 
family of receptors, including the EGFR (erb-1) and 
(HER-2/neu (erb-2). This activation is brought about by 
interaction of growth factor with their specific receptors 
in these cell types.14,42 

NF-κB with ER negative and Her2-neu 
positive breast cancer 
In oestrogen receptor-negative (ER-negative) breast 
cancer the main therapeutic impediment is absence of 
precise molecular target. Activated NF-κB could be that 
potential target in these sub set of cases as it is shows a 
stromal expression in ER-negative and Her2-neu 
tumours. This association suggests a significant role of 

activated NF-κB in modulating intercellular signalling 
between stromal and epithelial tumourous cells as these 
depend on NF-κB dependent cellular cascades and 
cycles for aberrant cell proliferation along with 
sustained cell survival by avoiding apoptosis.43,44 

Singh et al demonstrated the of effect 
inhibition of NF-κB activation by the inducible 
expression of dominant-negative IKKbeta in ER 
negative and Her2-neu positive breast cancer. This 
resulted in blocking cellular proliferation, restoration of 
apoptosis, and significantly blocked xenograft tumour 
formation. In addition, they found the combination of 
trastuzumab (Herceptin), the humanized anti-erbB2 
antibody and the specific IKK inhibitor NF-κB essential 
modifier-binding domain peptide effective in blocking 
NF-κB activation and the resultant cellular proliferation 
in addition to reinstating apoptosis in concentrations that 
were not effective when employed singly. These effects 
could pave a path for evolution of NF-κB transcription 
factor and its activation cascades as a potential 
therapeutic target for such breast cancers.45 

NF-κB and Inflammatory Breast Cancer 
Inflammatory breast cancer (IBC) has a poor prognosis 
and in spite of multimodal therapeutic regimens the 
patient prognostics are as dismal as metastatic breast 
cancer. Diagnosis is based on multiple well documented 
clinical parameters. The need to develop specific, 
precise prognostic factor prevails.46,47 Two major lines 
of evidence demonstrate  NF-Κb associated pathways to   
play a major contributory role in  IBC. Firstly, the 
principal processes that are dysregulated and disturbed 
at the clinical and molecular levels, i.e., inflammation, 
cellular proliferation and invasiveness are basically 
controlled by NF-κB associated genes.48 Secondly, 
recent studies documenting analysis of DNA 
microarrays in IBC have revealed abnormal expression 
of some NF-κB target genes.49,50 Hence NF-κB may not 
only serve as a prognostic parameter but may also 
evolve as a novel therapeutic target in this context.51 

NF-κB and tumour metastasis 
Metastasis  cancer cells includes a multistep complex 
mechanism comprising cellular invasion, angiogenesis 
with the cancer cells being carried through blood 
vessels, extravasations of malignant cells, organ-specific 
homing, and cellular growth. Matrix metalloproteinases, 
urokinase-type plasminogen activator, and cytokines 
play a pivotal role in the initial steps of invasion and 
angiogenesis. Chemokines such as stromal derived 
factor-1alpha (SDF-1alpha) and its associated receptors 
such as CXCR4 are determine the cellular motility, 
homing and aberrant proliferation. Helbig et al 
demonstrated upregulation of metalloproteinases, 
urokinase-type plasminogen activator, and cytokines by 
NF-κB in highly metastatic, aggressive breast cancer 
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cell lines. In addition it is also seen to increase motility 
of breast cancer cells by directly up-regulating the 
expression of CXCR4.52 

As the multi-faceted dimensions of NF-κB are 
being unmasked, its role as a prognostic and therapeutic 
target is evolving specifically in aggressive breast cancer 
subtypes.  
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