ORIGINAL ARTICLE
PROXIMAL FEMUR HISTO-MORPHOLOGICAL CHANGES AMONG HIP FRACTURE IN ELDERLY PATIENTS

Department of Anatomy, Bacha Khan medical College, Mardan, *Department of Anatomy, Ayub Medical College, Abbottabad-Pakistan

Background: Hip fracture causes high morbidity in elderly. Decreased bone mineral density is associated with hip fracture risks. The study is conducted to identify relationship of histomorphological changes in proximal femur in the cases of hip fractures in elderly with histomorphological changes in proximal femur. Methods: A total of 30 elderly patients with hip fracture were studied in this case series. The study was carried out in Orthopaedic and Pathology departments at Mardan Medical Complex from May 2014 to October 2014. Specimen during surgery, were collected for histopathological study. Results: Bone biopsy of hip fracture cases revealed cortical thinning, reduced number of osteocytes, thinning and fragmentation of trabeculae. Conclusion: This study concluded that bone micro architectural changes seems to be associated with the risk of hip fracture.

Keywords: Proximal femur; Histo-morphology; Hip fracture

INTRODUCTION
Hip fracture causes morbidity and mortality in old age. The global incidence of hip fracture is on a constant rise and is estimated to increase from 1.9 million in 1990 to 6.26 million in 2050.\(^1\) The frequency of hip fracture in elderly reported as 3 fractures per 10,000 populations per year.\(^2\) In men the age related sub-periosteal growth is more prominent as compared to women, while cortical thinning is the opposite.\(^3\) Bone mineral density (BMD) quality and microarchitecture, are responsible for bone strength. The two predominant parameters that can indirectly judge bone durability are bone mineralization and porosity.\(^4,5\) Since 1960 histological cross-sections of specimen have been utilizing for the scrutiny of bone microarchitecture, trabecular design and porosity as well as cellular pathway of cortico-trabecular bone.\(^6,7\) With increasing age, 6.4% of cortical thinning takes place per year especially in superior location of femoral neck. It is more prominent in superior-posterior octant of the head of femur in females. Age and sex have significant consequence on cortical porosity, with advanced age cortical pore calibre dilates with no compelling alteration in pore number. A study explained that women have higher cortical porosity and greater pore diameter in contrast to men.\(^8,9\) There is apparent dissymmetry in trabecular bone arrangement in the proximal femur, characterized by five groups of trabeculae; principal compressive, principal tensile secondary tensile, secondary compressive and greater trochanteric trabeculae. Trabecular connectedness is associated with a decrease in bone mineral density, their loss or disconnectedness rises the risk of hip fracture commonly in postmenopausal women with osteoporosis.\(^10\)

This study is conducted to observe histological changes in both cortical and trabecular bone of hip fracture in elderly Pakistani population. The study also identifies relationship of histo-morphological changes in proximal femur in the cases of hip fractures in elderly with histomorphological changes in proximal femur.

MATERIAL AND METHODS
This case series was conducted in the departments of Pathology and Orthopaedics Mardan Medical Complex during the year 2014 from May to October. Total of 30 patients (male and female) with hip fracture and planned arthroplasty were included in the study.

Patients gave Informed consent and detail history was taken. During the arthroplasty of the fracture site, the curetted bone samples were obtained for histological examination. The bone tissue fragments taken from head and neck of the femur, were decalcified in 5% nitric acid and then cut with a diamond blade. Five mm section from the sample, containing both cortical and cancellous bone were sectioned and were subjected to pass through a series of alcohol washes in order to be defatted. The sample was then embedded in paraffin, and section of 5–7 micrometre using microtome were cut, slides were stained with haematoxylin and Eosin. Data was analysed using SPSS 20.0.
RESULTS

Hip fracture biopsies showed variable osteoporotic changes. These changes were different from one area to another in the same bone. Bone disruption was seen with few thin, parted bone rods. (Figure-1) Cortical bone showed thin parallel osseous lamellas. Number of osteocytes were reduced. Osseous tissue had different tinctuality from one bone fragment to another. (Figure-2)

Uneven decalcification of bone was due to variation in mineral salt content in different area of the same bone; bone distribution was seen with few thin parted bone rods. Trabecular bone showed few empty osteoplast as shown in Figure-3

Necrosis was seen causing thinning and fragmentation of trabeculae. Areolar spaces were large irregular filled with red or yellow osseous marrow (Figure-3). Inflammation was not present.

DISCUSSION

Hip fracture contributes to high morbidity and fatality among people mostly in old age. Reduction of bone mass leads to deteriorations of bone microarchitecture and fragility, therefore bone mineral density is a risk factor for fracture which is an added cause of risk estimation. The gold standard to conclude the vicinity of osteoporosis and osteomalacia is bone histomorphology. In our study the biopsies of cases with hip fracture showed cortical thinning, red creased number of osteocytes, less dense and disintegration of trabeculae, which is consistent with the results of Indo-Pak subcontinent study of 26 hip fracture patients, which reported increase percentage (65%) of severe osteoporosis amid hip fracture cases.11 A study conducted in Japan reported that stroke patients with osteomalacia are probably more prone to hip fracture than patients with no osteomalacia.12 More such studies are
required with different design to study the phenomenon in detail in our population.

CONCLUSION

Osteoporotic alterations in bone biopsy taken from elderly patient with risk of hip fracture imply a valuable factor in the assessment of hip fracture risks. However further studies needed to clarify this conclusion.

AUTHORS' CONTRIBUTION

WA: Literature search, Conceptualization. HI, SJ: Conceptualization of study design, data collection and analysis. Amna, AN, UA: Data interpretation, write-up and proof reading.

REFERENCES


Address for Correspondence:
Dr. Wajid Akbar, Asstt. Prof. Anatomy Department, Bacha Khan Medical College, Mardan-Pakistan
Cell: +92 3009176437
Email: drwajidakbar@yahoo.com