CASE REPORT
A CASE OF PRECURSOR B-ACUTE LYMPHOBLASTIC LEUKAEMIA MASQUERADING AS HYPEREOSINOPHILIA AND SPACE OCCUPYING LESION IN A 14-YEAR-OLD BOY

Fatima Sharif, Ayesha Junaid, Khadija Ashraf
Department of Haematology, Shifa International Hospital, Islamabad-Pakistan

Peripheral blood eosinophilia is associated with a variety of benign and neoplastic conditions. Rarely, marked eosinophilia can mask an underlying Acute Leukaemia, delaying the correct diagnosis and treatment. Here, we report a case of 14-year-old boy, who presented with marked eosinophilia and space occupying lesion in the brain. Bone marrow biopsy and biopsy of brain lesion were performed to assess the underlying disorder, revealing the unexpected diagnosis of Precursor B- Acute Lymphoblastic Leukaemia in this patient. Cytogenetic studies revealed a normal male karyotype. This case highlights the significance of considering the rare possibility of Acute Lymphoblastic Leukaemia among the differential diagnosis of persistent eosinophilia in order to facilitate prompt and appropriate treatment.

Keywords: Acute Lymphoblastic Leukaemia; Eosinophilia, diagnosis


DOI: 10.55519/JAMC-04-10647

INTRODUCTION
Eosinophilia – defined as an absolute eosinophil count of greater than 500 cells/ul in the peripheral blood – is associated with a variety of reactive and malignant conditions.1 Reactive causes of eosinophilia include parasitic infections, allergies, asthma, dermatological disorders, medications and autoimmune diseases such as sarcoidosis and Churg Strauss syndrome; whereas clonal proliferation of eosinophils can occur in Hodgkin Lymphoma, Myeloproliferative Neoplasms and Acute Leukemia.2 Eosinophilia can mask an underlying leukaemia and delay the actual diagnosis, particularly if steroids are administered.3 Early diagnosis of leukaemia is essential to prevent the associated complications. Here we present the case of a 14-year-old boy who presented with marked eosinophilia and space occupying lesion in the brain. Bone marrow biopsy was performed to assess the underlying cause of markedly raised total leucocyte count, leading to the unexpected diagnosis of Precursor B Acute Lymphoblastic Leukaemia (Pre B-ALL) in this patient.

CASE
A 14-year-old boy presented with the history of fever accompanied by right sided focal seizures and irritability. The fever was documented upto 100 °F. Patient was also admitted three months back with the complaint of sudden onset of headache and transient right arm and forearm weakness with difficulty in writing. Computed tomography was performed on earlier admission as well as on current admission; both revealed impression of progressively increasing subdural collection/enhancing lesion in left parietal region causing mild mass effect. Brain biopsy was advised, but was deferred by the family during the initial visit. During the current visit, the patient was febrile and lethargic. On examination, there was no visceromegaly or lymphadenopathy. Normal heart sounds and bilateral normal vesicular breathing were noted. His laboratory investigations were sent which revealed a raised C-Reactive Protein of 25 mg/dl. (normal up to 5 mg/dL). LDH levels were raised up to 506 U/L (135-225 U/L), with no apparent evidence of haemolysis. Serum B12 and Folate levels were unremarkable. The striking findings were in his Complete Blood Count which showed: Total leucocyte count of 209,180/ul (4000–11,000/ul), Haemoglobin 14.1 g/dl (12–16 g/dl) and Platelet count 141,000/ul (150,000 – 450,000/ul). Peripheral smear examination revealed marked leucocytosis with absolute eosinophilia (>80% eosinophils), few myeloid precursors and occasional atypical cells. Serum IgE levels and bone marrow biopsy were advised to investigate the cause of marked leucocytosis with eosinophilia.

Subsequently, bone marrow aspirate and trephine biopsy were performed under sedation. Bone marrow aspirate revealed increased eosinophils and their precursors along with scattered lymphoblasts in the specimen. The blasts were small to medium in size with high nuclear to cytoplasm ratio, immature chromatin and inconspicuous nucleoli. Bone marrow trephine showed a hypercellular marrow with an overall cellularity of 100% and increased blasts, having same morphology as mentioned above. On immunohistochemistry, these blasts were positive for TdT, CD10 and CD20 immunomarkers whereas heterogeneous distribution of CD34 immuno-stain was observed. Diagnosis of Precursor B-Acute Lymphoblastic Leukaemia was made. Peripheral blood and bone marrow findings are depicted in Figure-1. Cytogenetic studies were performed on bone marrow aspirate, revealing a normal male karyotype. He also underwent biopsy of brain lesion which was consistent with Precursor B- Lymphoblastic Lymphoma. Figure-2 demonstrates the morphological and immunohistochemical findings of brain biopsy in this patient.
Figure 1: A: Peripheral blood, B: Bone marrow aspirate, C: Trephine biopsy 
Haematoxylin and Eosin stain, D: Tdt, E: CD10, F: CD20 immunostains

Figure 2: A: Brain biopsy Haematoxylin and Eosin stain, B: CD20, C: Tdt, D: CD79a
Table-1: Clinicopathological and cytogenetic characteristics of ALL patients presenting with eosinophilia

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>n</th>
<th>Age</th>
<th>Clinical presentation</th>
<th>Cytogenetics/ Molecular studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yu et al.⁹</td>
<td>2015</td>
<td>1</td>
<td>13 years</td>
<td>Dyspnoea, cardiomegaly, cough, pleural effusion</td>
<td>IL3-IgH rearrangement, PIK3CA mutation</td>
</tr>
<tr>
<td>Avramova et al.⁹</td>
<td>2020</td>
<td>1</td>
<td>30 months</td>
<td>Fever, itching</td>
<td>normal 46 XX karyotype</td>
</tr>
<tr>
<td>Kaneko et al.</td>
<td>2014</td>
<td>1</td>
<td>57 years</td>
<td>Fever, eosinophilia</td>
<td>normal 46 XX karyotype</td>
</tr>
<tr>
<td>Song et al.⁹</td>
<td>2012</td>
<td>1</td>
<td>61 years</td>
<td>Fatigue, muscle pain</td>
<td>t(5;14)(q31;q32) IgH-IL3 rearrangement</td>
</tr>
<tr>
<td>Toboso et al.¹⁵</td>
<td>2017</td>
<td>1</td>
<td>60 years</td>
<td>Dyspnoea, fever, pulmonary embolism, deep vein thrombosis</td>
<td>t(5;14)(q31;q32) IgH-IL3 rearrangement</td>
</tr>
<tr>
<td>Matnani et al.¹²</td>
<td>2020</td>
<td>1</td>
<td>13 years</td>
<td>Flank pain, hepatosplenomegaly</td>
<td>high hyperdiploid karyotype: 52,XY,+X,+4,+9,+14,+21,+21</td>
</tr>
<tr>
<td>Ferruzzi et al.</td>
<td>2018</td>
<td>1</td>
<td>11 years</td>
<td>Headache, fever, cough, weight loss</td>
<td>hyperdiploid karyotype: 53-55, XY, +X, add(1)(q21q25), +4, +9, +10, +14, +2, +1, +21/46, XY</td>
</tr>
<tr>
<td>Sahu et al.²⁰</td>
<td>2014</td>
<td>1</td>
<td>21 years</td>
<td>Fever, dyspnoea, mediastinal mass</td>
<td>normal karyotype</td>
</tr>
<tr>
<td>Bhatti et al.⁸</td>
<td>2009</td>
<td>1</td>
<td>31 years</td>
<td>Fatigue, generalized weakness, joint pain</td>
<td>unique cytogenetic abnormality</td>
</tr>
<tr>
<td>Our case</td>
<td>2021</td>
<td>1</td>
<td>14 years</td>
<td>Fever, seizures</td>
<td>Normal karyotype</td>
</tr>
</tbody>
</table>

DISCUSSION

Acute Lymphoblastic Leukaemia (ALL) with eosinophilia accounts for less than 1% of total cases of ALL and has been reported in both adult and paediatric populations. This rare association was initially reported by Spitzer and Garson in 1973. However, due to clinical resemblance with Hypereosinophilic Syndrome (HES) and masking of leukemic cells in peripheral blood, the diagnosis may be overlooked unless bone marrow biopsy or flow cytometry is performed.

Various cytogenetic findings have been documented in patients with ALL who present with eosinophilia. The translocation t(5;14) (q31;q32); IGH-IL3 has been implicated in a number of cases, which juxtaposes the IGH enhancer on chromosome 14q32 to the IL3 gene on 5q31. This results in increased production of interleukin-3 (IL-3), which causes the production and release of eosinophils into the bloodstream. The eosinophils seen in these cases are mostly mature, therefore it is postulated that the eosinophilia occurring in ALL is a non-neoplastic response to the presence of lymphoblasts. However, regardless of whether eosinophilia is a reactive or clonal proliferation, eosinophilic infiltration can result in life threatening end organ damage to the heart, lungs, liver, brain and kidneys.

Table 1 summarizes the clinicopathological, cytogenetic and/or molecular findings in patients with ALL who presented with peripheral blood eosinophilia.

A study by Ferruzzi et al. analyzed the characteristics of several cases of ALL presenting with eosinophilia, reported in the literature between 1973 and 2017. They found that blasts were present in peripheral blood at the time of diagnosis in 26.3% of the cases whereas 29.5% of patients had a normal karyotype on cytogenetic studies, as was the case in our patient. Furthermore, they concluded that the association of ALL with hypereosinophilia has a poor prognosis due to increased risk of thromboembolism and cardiac infiltration by eosinophils.

Involvement of the Central Nervous System (CNS) as seen in our patient occurs in approximately 3 to 5% of patients at the time of diagnosis of ALL. In our patient, the features of peripheral blood eosinophilia along with space occupying lesion in a young boy led to the initial differential diagnosis of parasitic disease. However, infection related workup was negative and bone marrow biopsy successfully led to the definitive diagnosis.

CONCLUSION

Acute Lymphoblastic Leukemia is a rare cause of persistent eosinophilia which may be overlooked due to masking of leukemic cells in the peripheral blood. Recognition of this association is imperative for early diagnosis and management of disease.

REFERENCES

eosinophilia lacking peripheral blood leukemic cell: a rare
7. Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic
leukemia/lymphoblastic lymphoma. Am J Clin Pathol
2015;144(3):393–410.
8. Fournier B, Bialucci E, Duployez N, Clappier E, Cuccuini
W, Arfeuille C, et al. B-ALL with t (5; 14)(q31; q32); IGHL3
rearrangement and eosinophilia: a comprehensive
analysis of a peculiar IGH-rearranged B-ALL. Front Oncol
2019;9:1374.
leukemia with eosinophilia: a case report and review of the
10. Sahu KK, Malhotra P, Khadwal A, Sachdeva MS, Sharma P,
Varma N, et al. Hypereosinophilia in acute lymphoblastic
leukemia: two cases with review of literature. Indian J
11. Toboso DG, Campos CB. Peripheral eosinophilia as the first
manifestation of B-cell acute lymphoblastic leukemia with t
(5; 14)(q31; q32). Blood 2017;130(3):380.
12. Matnani R, Weissmann D. Hyperdiploid B-lymphoblastic
leukemia/lymphoma with hypereosinophilia and very few
13. Fournier B, Balducci E, Duployez N, Clappier E, Cuccuini
W, Arfeuille C, et al. B-ALL with t (5; 14)(q31; q32); IGHL3
rearrangement and eosinophilia: a comprehensive
analysis of a peculiar IGH-rearranged B-ALL. Front Oncol
2019;9:1374.
leukaemia/lymphoma with hypodiploidy (-9) and a novel
chromosomal translocation t (7; 12)(q22; p13) presenting
with severe eosinophilia–case report and review of literature.
15. Lenk L, Alsadeq A, Schewe DM. Involvement of the central
nervous system in acute lymphoblastic leukemia: opinions on
molecular mechanisms and clinical implications based on

Address for Correspondence:
Ayesha Junaid, Consultant Haematologist, Department of Haematology, Shifa International Hospital, Islamabad-Pakistan
Cell: +92 323 508 4779
Email: ayesha.junaid@shifa.com.pk