FLEXOR TENDON INJURIES OF HAND: EXPERIENCE AT PAKISTAN INSTITUTE OF MEDICAL SCIENCES, ISLAMABAD, PAKISTAN

Muhammad Ahmad, Syed Shahid Hussain, Farhan Tariq*, Zulqarnain Rafiq**, M. Ibrahim Khan***, Saleem A. Malik

Department of Plastic Surgery, Pakistan Institute of Medical Sciences (PIMS), Islamabad, *District HeadQuarter Hospital, Rawalpindi, **Department of Orthopaedic PIMS, Islamabad, ***Frontier Medical College, Abbottabad.

Background: Flexor tendon injury is one of the most common hand injuries. This initial treatment is of the utmost importance because it often determines the final outcome: inadequate primary treatment is likely to give poor long tem results. Various suture techniques have been devised for tendon repair but the modified Kessler's technique is the most commonly used. This study was conducted in order to know the cause, mechanism and the effects of early controlled mobilization after flexor tendon repair and to assess the range of active motion after flexor tendon repair in hand. Methods: This study was conducted at the department of Plastic Surgery, Pakistan Institute of Medical Sciences, Islamabad from 1st March 2002 to 31st August 2003. Only adult patients of either sex with an acute injury were included in whom primary or delayed primary tendon repair was undertaken. In all the patients, modified Kessler's technique was used for the repair using non-absorbable monofilament (Prolene 4-0). The wound was closed with interrupted nonabsorbable, polyfilament (Silk 40) suture. A dorsal splint extending beyond the finger tip to proximal forearm was used with wrist in $20 - 30^{\circ}$ palmer flexion, metacarpophalangeal (MP) joint flexed at 60° . Passive movements of fingers were started from the first post operative day, and for controlled, active movements, a dynamic splint was applied. Results: During this study, 33 patients with 39 digits were studies. 94% of the patients had right dominated hand involvement. 51% had the complete flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) injuries. Middle and ring fingers were most commonly involved. Thumb was involved in 9% of the patients. Zone III (46%) was the commonest to be involved followed by zone II (28%). Laceration with sharp object was the most frequent cause of injury. Finger tip to distal palmer crease distance (TPD) was < 2.0 cm in 71% cases (average 2.4cm) at the end of 2nd postoperative week. Total number of patients was 34 at the end of 6^{th} week. TPD was < 2.0 cm in 55% patients and < 1.0 cm in 38% cases (average 1.5cm) at the end of 6th week. Total 9 patients were lost to the follow up at the end of 8^{th} week. TPD was < 1.0 cm in 67% (average 0.9cm) at the end of 8^{th} postoperative week. No case of disruption of repair was noted during the study. **Conclusion:** Early active mobilization programme is essential after tendon repair. Majority of the patients (92%) had fair to good results at the end of 2^{nd} week which increased to 97% at the end of 8^{th} week to good to excellent.

Keywords: Flexor Tendon Injury, Modified Kessler's repair, Dynamic Splint

INTRODUCTION

Flexor tendon injury is one of the most common hand injuries¹. It often occurs in young individuals in the prime of their lives². Partial tendon injury can be difficult to diagnose. Prolonged disability following such an injury can result in physical and emotional suffering and socioeconomic disaster for the patient². Primary treatment with restoration of normal anatomy in a single operation is required to achieve the best possible outcome³. This initial treatment is of the utmost importance because it often determines the final outcome; inadequate primary treatment is likely to give poor long tem results⁴.

Surgical repair of flexor tendon requires an exact knowledge of anatomy, careful adherence to some basic surgical principles, sound clinical judgment, strict atraumatic surgical technique and a well planned post operative programme. Flexor tendon injuries are divided into five zones (Zone I to V)² (Fig. 1). Various suture techniques have been devised for tendon repair but the modified Kessler's technique is the most commonly used⁵⁻¹⁰. There are a few post operative regimens after flexor tendon repair to be followed ^{2,11}. The most widely accepted and practiced is that of Kleinert who used dynamic traction for 5 weeks after tendon repair¹².

Post operative assessment is equally important. Various methods have been devised, i.e. Boyes' method, Louisville system, Total Active Motion (TAM) scale etc^1 , but the simplest method involves the measurement of distance between finger tip and distal palm crease with the digit in active flexion^{1, 13-15}.

This study was conducted in order to know the cause, mechanism and the effects of early controlled mobilization after flexor tendon repair and to assess the range of active motion after flexor tendon repair in hand.

Fig. 1: Zones of the Hand

MATERIALS AND METHODS

This Quasi experimental study was conducted at the department of Plastic Surgery, Pakistan Institute of Medical Sciences, Islamabad from 1st March 2002 to 31st August 2003. Only adult patients of either sex with an acute injury were included in whom primary or delayed primary tendon repair was undertaken. Patients with old injury, injury proximal to wrist, patients having concomitant extensor tendon injury or in whom delayed flexor tendon repair was performed, were excluded from the study. In all the patients, modified Kessler's technique was used for the repair of flexor tendons. Non-absorbable monofilament (Prolene 4-0) suture was used. After the repair, wound was closed with fine, interrupted non-absorbable, polyfilament (Silk 40) suture. Sterile dressing was applied along with a dorsal splint extending beyond the finger tip to proximal forearm. Wrist was held in $20 - 30^{\circ}$ palmer flexion, metacarpophalangeal (MP) joint flexed at 60° . The splint allowed full extension of proximal and distal interphalangeal (IP) joints. Palmer surface of fingers was kept relatively free (Fig. 2).

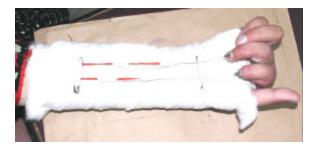


Fig 2: Protective splint with Rubber bands

Passive movement of fingers was started from the first post operative day, and for controlled, active movements, a dynamic splint was applied. Splintage was discontinued after 4 - 5 weeks and active movements were started. Heavy lifting was not allowed for 15 weeks and grip strengthening exercises were started after 16 weeks. All patients were followed up, post operatively, weekly for 4 weeks and then at the end of 6^{th} , 8^{th} , 10^{th} , 12^{th} , 4^{th} , 16^{th} and 18^{th} weeks. Ranges of motion of the repaired fingers were checked by measuring the distance between finger tip and distal palmer crease with digit in full flexion. Any complication was also noted separately.

RESULTS

During this study, 33 patients with 39 digits were studies. Almost all the patients had right dominated hand (94%). 51% had the complete flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) injuries. Middle and ring fingers were most commonly involved. Thumb was involved in 9% of the patients. Some details of the patients are mentioned in Table 1. Zone III (46%) was the commonest to be involved followed by zone II (28%) (Table 2). Laceration with sharp object was the most frequent cause of injury (Table 3). Finger tip to distal palmer crease distance (TPD) was < 2.0 cm in 71% cases (average 2.4cm) at the end of second postoperative week. Total number of patients was 34 at the end of sixth week. TPD was < 2.0 cm in 55% patients and < 1.0 cm in 38% cases (average 1.5cm) at the end of sixth week. Nine patients were lost to follow up at the end of eighth week. TPD was < 1.0cm in 67% (average 0.9cm) at the end of eighth postoperative week. No case of disruption of repair was noted during the study.

Table 1:	Details	of patients
----------	---------	-------------

Total patients	33	
Total digits injured	39	
Dominant hand injuries	31	
Primary repair	Nil	
Delayed primary repair (24–48 hours)	03	
(> 48 hours)	36	
Digits in hand in patients more	03	
than one digit of the same hand	05	
FDP avulsion	01	
Complete FDS+ complete FDS injury	20	
Complete FDP+incomplete FDS injury	07	
Complete FDP injury only	06	
Complete FDS injury only	01	
Incomplete FDS injury only	01	
Complete FPL injury	02	
FPL avulsion	01	

FDS = flexor digitorum superficialis

FDP = flexor digitorum profundus, FPL = flexor pollicis longus

Zone	No. of patients	%	
Ι	02	05.2	
Π	11	28.6	
III	18	46.8	
IV	05	13.0	
V	03	07.8	

Table 2: Zones of injury (n = 39)

Cause	No. of patients	%				
Injury by glass	15	39.0				
Injury by knife	08	20.8				
Road traffic accident	03	07.8				
Electric saw	04	10.4				
Wood planer injury	02	05.2				
Firearm injury	01	02.6				
Electric injury	01	02.6				
Injury by a sickle	01	02.6				
Others	04	10.4				

Table 3: Actiology (n = 39)

Table 4: Post operative progress in finger

	movement (n = 39)Week 2Week 6Week 8					
Grade	n=38	%	n=34	%	n=30	%
EXCELLENT < 1.0 cm	02	05	13	38	20	67
GOOD < 2.0 cm	27	71	19	55	09	30
FAIR < 4.0 cm	08	21	02	06	01	03
POOR > 4.0 cm	01	03	Nil		Nil	

DISCUSSION

Injuries to the flexor tendons are common. Each specific movement of the hand relies on the finely tuned biomechanical interplay of the intrinsic and extrinsic musculotendinous forces¹⁶. Restoring digital function after a flexor tendon injury continues to be one of the great challenges in the filed of hand surgery¹⁷. Advances in understanding of tendon anatomy, nutrition, healing, and post operative rehabilitation have generated an evolution of techniques that have enhanced the results of flexor tendon repair¹⁷. Tendon lacerations frequently are associated with neurovascular injury that further compromises the functional results. The treatment of flexor tendon injuries requires a thorough knowledge of hand anatomy, use of atraumatic surgical technique, and a structured programme of post operative rehabilitation.

The level of flexor tendon injury carries a prognostic implication because of anatomic constrains to flexor tendons over their course from the muscle belly in the forearm to their insertions¹⁷. Zone I flexor

tendon injuries occur in the area between the insertions of FDS and FDP tendons.

Zone II extends from the insertion of FDS tendon to the level of A1 pulley (at metacarpo-phalangeal joint). Zone III lies between level of A1 pulley and the distal limit of carpal canal. Zone IV is the area of flexor tendons that lies within the carpal canal. Zone V is between the entrance to carpal canal and the musculotendinous junctions¹.

Similar zones are also described in the thumb (Fig 1). Zone I lies distal to interphalangeal joint. Zone II extends from A1 pulley to interphalangeal joint. Zone III is the area around thenar eminence between carpal canal and A1 pulley. Zones IV and V correspond to their respective zones of fingers. Zone II where the tendons are enclosed within their fibro-osseous sheath, has been termed as 'no man's land' because of generally worse outcome associated with tendon repairs in this area¹.

Much of the work in the literature is therefore done in Zone II. Various types of methods of flexor tendon repair have been evaluated ¹⁸⁻²⁰. In our study, 46% were zone III injuries and 28% were zone II injuries. We used the modified Kessler's technique using non-absorbable monofilament (Prolene 4-0) suture and an epitendinous circumferential continuous suture using 60 Prolene both on round body needles. Almost the same technique was used by Silfverskiold ¹⁴ but his sample size was slightly larger (46 patients with 55 injured digits). He used Strickland's classification to know the outcome of the repairs whereas we used the White's criteria (finger tip to distal palmer crease distance).

In majority of our patients, single digit was involved but only in 3 patients, this is in agreement with the previously published data²¹, more than one digit of the same hand was involved. 39% of the patients were injured due to sharp glass. 20 % had injury due to knife. Interestingly 3 patients had blunt injury.

Tendon excursions are directly related to the joint range of motion²². It is essential that a large interphalangeal joint range of motion is established soon after the operation before the restrictive adhesions have time to form¹⁹. In majority of the patients, initial pain tends to inhibit voluntary active flexion. The strain on the repair may be tremendous if the extensors are also simultaneously working which increases the risk of rupture. To prevent this complication, we used the protective dorsal splint (Fig 2).

Initially we devised the schedule of post operative follow up at the end of each week but it was difficult for the patients to come on every week. Therefore, we noted the readings at the end of 2^{nd} , 6^{th}

and 8th week. The range of finger tip to palmer crease distance (TPD) emained 24 cm (average 2.4 cm) 'good' to 'fair' in 97% patients at the end of 2^{nd} post operative week and < 2.0 'good' at the end of 6th week in 55% patients and ,1.0cm 'excellent' in 38% patients. At the end of 8th week, TPD was <1.0cm in 67% cases and <2.0cm in 30% cases. Only 1 patient had TPD >2.0 cm.

The main problem we faced in our study was the regular follow-up of these patients. Out of 33 patients, 30(91%) patients turned up at the end of 6^{th} week. This number even decreased after the 1^{st} week of the splint removal and at the end of 8^{th} postoperative week, 26 patients turned up in OPD clinic. Therefore we presumed that the follow-up schedule was too heavy. Various factors may be responsible for this low turn up. The lack of interest perhaps once the finger started some movement, poor socio-economic conditions, variable distances from the hospital (as most of the patients were referrals from other hospitals), illiteracy etc.

Various complications are documented²³, however, no case of dehiscence was reported in our study as the protective dorsal splint and the rubber bands kept the fingers in the flexed position. This is better than observed in some studies 20,24 . In a study by Furgoson et al²⁵, hydrogel was used to prevent adhesion formation at the repair site. But regular active and passive movements of the fingers, in our study, prevented adhesions formation. Post-operative rehabilitation is of utmost importance. We used the manual exercise protocol. In a study by the Savage et al ²⁶, plaster splint was used.

In conclusion, this study demonstrated that early active mobilization programme is essential after tendon repair. Majority of the patients (92%) had fair to good results at the end of 2^{nd} week that increased to 97% at the end of 8^{h} week to good to excellent. A regular, well supervised follow up programme should be ensured to know the final outcome of the treatment and patients' motivation must be established.

REFERENCES

- Lee WPA, Gan BG, Harris SU. Flexor tendons. In: Achauer BM, Erickson E, Guyuron B, Colemen III JJ, Russell RC, Vander Kolk CA eds. Plastic Surgery: Indications, Operations and Outcomes. Philadelphia. Mosby Inc 2000;1961-82.
- Leddy JP, Flexor tendons acute injuries. In: green DP ed. Operative hand surgery. 4th edition. London. Churchill Livingstone1999; 711-71.
- 3. Page RF. Tendon injuries of the hand. Surgery 1997;15:227.
- 4. Ganatra MA. Prevention of hand deformities. Med Channel 1997; 3(1): 22-25.
- 5. Lee H. Double loop locking suture: a technique of tendon repair for early active mobilization. J Hand Surg 1990;15(6): 945-52(Part I), 953-58(Part II).

- Keesler I. The grasping technique for tendon repair. Hand 1973; 5(3):253-55.
- Meir AR, Koshy CE. Placement of sutures in tendon repair. Br J Plast Surg 2000; 53(2):172-373.
- Boyce DE, Srivast ava S. Placement of sutures in tendon repair. Br J Plast Surg 1999;52(6):511.
- Peng YP, Lim BH, Chou SM. Towards a splint free tendon repair flexor tendon injuries. Ann Acad Med Singapore 2002; 31(5):593-97.
- Nduka CC, Periera JA, Belcher HJCR. A simple technique to avoid inadvertent damage to monofilament core suture material during flexor tendon repair. Br J Plast Surg 2001; 54:80-1.
- Cetin A, Dincer F, Kecik A, Cetin M. Rehabilitation of flexor tendon injuries by use a combined regimen of modified Kleinert and modified Duran techniques. Am J Phys Med Rehabil 2001;80(10:721-28.
- Hung LK, Pang KW, Yeung PL, Cheung L, Wong JMW, Chan P. Active mobilisation after flexor tendon repair: comparison of results following injuries in zone 2 and other zones. J Ortho Surg 2005;13(2):158-63.
- 13. Boyes JH. Flexor tendon grafts in the fingers and thumb: an evaluation of end results. J Bone Joint Surg 1950;32: 489.
- So YC, Chow SP, Pun WK, Luk KD, Crosby C, Nq C Evaluation of results in flexor tendon repairs: a clinical analysis of five methods in ninety five digits. J Hand Surg 1993;15(2):258.
- 15. Athwal GS, Wolfe SW. Treatment of acute flexor tendon injury: zones III-V. Hand Clin 2005; 21(2):181-6.
- Neumeister M, Wilhemi BJ, Bueno RA Jr. Flexor tendon lacerations. Available from URL.http://www.emedicine.com/ orthoped/topic94.htm accessed on 20-04 -2006.
- Taras JS, Hunter JM. Acute tendon injuries. In: Cohen M ed. Mastery of Plastic and Reconstructive Surgery. New York: Little Brown and Co1994; 550-56.
- Tang JB, Gu YT, Rice K, Chen F, Pan CZ. Evaluation of four methods of flexor tendon repair for postoperative active mobilization. Plast Reconstr Surg 2001;107(3):742-49.
- Silfverskiold KL, May EJ. Flexor tendon repair in zone II with a new suture technique and an early mobilization programme combining passive and active flexion. J Hand Surg 1994; 19(1):53-60.
- Tang JB, Shi D, Gu YQ, Chen JC, Zhou B. Double and multiple looped suture tendon repair. J Hand Surg 1994; 19(6): 699-703.
- 21. Strickland JW. The scientific basis for advances in flexor tendon surgery. J Hand Ther 2005; 18(2):94-110.
- Silfverskiold KL, May EJ, Tornvall A. Flexor digitorum profundus excursion during controlled motion after flexor tendon repair in zone II: a prospective clinical study. J Hand Surg 1992; 17:122-31.
- Lilly SI, Messer TM. Complications after treatment of flexor tendon injuries. J Am Acad Orthop Surg 2006;14(7):387-96.
- Sirotakova M, Elliot D. Early active mobilization of primary repairs of the flexor pollicis longus tendon with two Kessler two strand core suture and a strengthened circumferential suture. J Hand Surg 2004;29(6):531-35.
- 25. Ferguson RE, Rinker B The use of a hydrogel sealant on flexor tendon repairs to prevent adhesion formation. Ann Plast Surg 2006; 56(1):54-8.
- Savage R, Pritchard MG, Thomas M, Newcombe RG. Differential splintage for flexor tendon rehabilitation: an experimental study of its effect on finger flexion strength. J Hand Surg 2005;30(2):168-74.

Address for Correspondence: Dr. Muhammad Ahmed, Department of Plastic Surgery, Pakistan Institute of Medical Sciences (PIMS), Islamabad.