• Syed Ijlal Ahmed Darul Sehat Hospital
  • Gohar Javed Aga Khan University Hospital
  • Saher Naseeb Uneeb Liaquat National Medical college
  • Syeda Beenish Bareeqa Jinnah Medical and Dental college
  • Manaal Haider Bahria medical university
  • Syeda Sana Samar Jinnah Sindh Medical University
  • Armghan Haider Ans services institute of medical sciences
  • Muhammad Tayyab Shera Kind Edward Medical Univeristy


Background: Intracranial arteriovenous malformations (AVMs) consist of an abnormal nidus of blood vessels that shunt blood directly from an artery to a vein and thereby bypass an intervening capillary bed. AVMs may be found as an incidental finding. They may be associated with intracranial haemorrhage, seizures, headaches or neurological deficits. There are different treatment options for AVM. These include observation, microsurgery, Stereotactic radio surgery (SRS), endovascular embolization and intensity modulated radiotherapy (IMRT). Method: Data was collected using searching engines like Pubmed, Google scholar, Embase, Cinahl and Medline. MeSH and Non-MeSH terms were used like Arterio-venous malformations, microsurgery, endovascular embolization. Results: Multiple interventional radiosurgical techniques have been introduced in recent years. The most effective and least risk-associated methods are Stereotactic radiosurgery, Microsurgery, Embolization and Intensity modulated radiotherapy (IMRT). However, the outcome of such treatment modalities depends upon Site of malformation, grade of AVM, patient’s age/gender, dose and volume of radiosurgery. Digital substraction angiography (DSA) and MR angiography (MRA) are most suitable methods for the follow-up of AVMs. Conclusion: Stereotactic radiosurgery is the most suitable technique for AVMs considering the good prognosis and the risks associated with this procedure. However, large AVMs require multi-disciplinary approach for better results.Keywords: Arterio-venous malformations; stereotactic radio-surgery, microsurgery; endovascular embolization


Atkinson RP, Awad IA, Batjer HH, Dowd CF, Furlan A, Giannotta SL, et al. Reporting terminology for brain arteriovenous malformation clinical and radiographic features for use in clinical trials. Stroke 2001;32(6):1430–42.

Bruno CA Jr, Meyers PM. Endovascular management of arteriovenous malformations of the brain. Interv Neurol 2012;1(3-4):109–23.

Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, et al. The New York Islands AVM Study: Design, study progress, and initial results. Stroke. 2003;34(5):e29–33.

Barr JC, Ogilvy CS. Selection of treatment modalities or observation of arteriovenous malformations. Neurosurg Clin N Am 2012;23(1):63–75.

Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 1998;42(6):1239–44.

Raghunath A, Bennett N, Arimappamagan A, Bhat DI, Srinivas D, Thennarasu K, et al. Impact on cognitive functions following gamma knife radiosurgery for cerebral arteriovenous malformations. J Neurosci Rural Pract 2016;7(1):28–35.

Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG. Interim report on the radiosurgical treatment of cerebral arteriovenous malformations: The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 1995;83(5):832–7.

Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery 2003;52(2):296–308.

Nataf F, Ghossoub M, Schlienger M, Moussa R, Meder JF, Roux FX. Bleeding after radiosurgery for cerebral arteriovenous malformations. Neurosurgery 2004;55(2):298–306.

Karlsson B, Lax I, Soderman M. Factors influencing the risk for complications following Gamma Knife radiosurgery of cerebral arteriovenous malformations. Radiother Oncol 1997;43(3):275–80.

Fuss M, Salter BJ, Caron JL, Vollmer DG, Herman TS. Intensity-modulated radiosurgery for childhood arteriovenous malformations. Acta Neurochir (Wien) 2005;147(11):1141–9.

Steiner L, Lindquist C, Adler JR, Torner JC, Alves W, Steiner M. Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 1992;77(1):1–8.

Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg 2004;100(2):210–4.

Chang JH, Chang JW, Park YG, Chung SS. Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 2000;93(Suppl 3):96–101.

Steinberg GK, Fabrikant JI, Marks MP, Levy RP, Frankel KA, Phillips MH, et al. Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 1990;323(2):96–101.

Phillips MH, Stelzer KJ, Griffin TW, Mayberg MR, Winn HR. Stereotactic radiosurgery: a review and comparison of methods. J Clin Oncol 1994;12(5):1085–99.

Semwal MK, Singh S, Sarin A, Bhatnagar S, Pathak HC. Comparative clinical dosimetry with X-knife and gamma knife. Phys Med 2012;28(3):269–72.

Schneider BF, Eberhard DA, Steiner LE. Histopathology of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 1997;87(3):352–7.

Schauble B, Cascino GD, Pollock BE, Gorman DA, Weigand S, Cohen-Gadol AA, et al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology 2004;63(4):683–7.

Pikus HJ, Beach ML, Harbaugh RE. Microsurgical treatment of arteriovenous malformations: analysis and comparison with stereotactic radiosurgery. J Neurosurg 1998;88(4):641–6.

Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 1991;75(4):512–24.

Steiner L, Lindquist C, Cail W, Karlsson B, Steiner M. Microsurgery and radiosurgery in brain arteriovenous malformations. J Neurosurg 1993;79(5):647–52.

Firlik AD, Levy EI, Kondziolka D, Yonas H. Staged volume radiosurgery followed by microsurgical resection: a novel treatment for giant cerebral arteriovenous malformations: technical case report. Neurosurgery 1998;43(5):1223–8.

Steinberg GK, Chang SD, Levy RP, Marks MP, Frankel K, Marcellus M. Surgical resection of large incompletely treated intracranial arteriovenous malformations following stereotactic radiosurgery. J Neurosurg 1996;84(6):920–8.

Marciscano AE, Huang J, Tamargo RJ, Hu C, Khattab MH, Aggarwal S, et al. Long-term Outcomes With Planned Multistage Reduced Dose Repeat Stereotactic Radiosurgery for Treatment of Inoperable High-Grade Arteriovenous Malformations: An Observational Retrospective Cohort Study. Neurosurgery 2017;81(1):136–46.

Starke RM, Yen CP, Ding D, Sheehan JP. A practical grading scale for predicting outcome after radiosurgery for arteriovenous malformations: analysis of 1012 treated patients: Clinical article. J Neurosurg 2013;119(4):981–7.

Mathis JA, Barr JD, Horton JA, Jungreis CA, Lunsford LD, Kondziolka DS, et al. The efficacy of particulate embolization combined with stereotactic radiosurgery for treatment of large arteriovenous malformations of the brain. AJNR Am J Neuroradiol 1995;16(2):299–306.

Andrade-Souza YM, Ramani M, Scora D, Tsao MN, terBrugge K, Schwartz ML. Embolization before radiosurgery reduces the obliteration rate of arteriovenous malformations. Neurosurgery 2007;60(3):443–52.

Watanabe Y, Sandhu D, Warmington L, Moen S, Tummala R. Three-dimensional assessment of the effects of high-density embolization material on the absorbed dose in the target for Gamma Knife radiosurgery of arteriovenous malformations. J Neurosurg 2016;125(Suppl 1):123–8.

Gobin YP, Laurent A, Merienne L, Schlienger M, Aymard A, Houdart E, et al. Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 1996;85(1):19–28.

Xu F, Zhong J, Ray A, Manjila S, Bambakidis NC. Stereotactic radiosurgery with and without embolization for intracranial arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Focus 2014;37(3):E16.

Xu F, Ni W, Liao Y, Gu Y, Xu B, Leng B, et al. Onyx embolization for the treatment of brain arteriovenous malformations. Acta Neurochir (Wien) 2011;153(4):869–78.

Tome WA, Meeks SL, McNutt TR, Buatti JM, Bova FJ, Friedman WA, et al. Optically guided intensity modulated radiotherapy. Radiother Oncol 2001;61(1):33–44.

Woo SY, Grant WH 3rd, Bellezza D, Grossman R, Gildenberg P, Carpenter LS, et al. A comparison of intensity modulated conformal therapy with a conventional external beam stereotactic radiosurgery system for the treatment of single and multiple intracranial lesions. Int J Radiat Oncol Biol Phys 1996;35(3):593–7.

Ellis TL, Friedman WA, Bova FJ, Kubilis PS, Buatti JM. Analysis of treatment failure after radiosurgery for arteriovenous malformations. J Neurosurg 1998;89(1):104–10.

Miyawaki L, Dowd C, Wara W, Goldsmith B, Albright N, Gutin P, et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys 1999;44(5):1089–106.

Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 1996;36(4):873–9.

Flickinger JC, Lunsford LD, Kondziolka D, Maitz AH, Epstein AH, Simons SR, et al. Radiosurgery and brain tolerance: an analysis of neurodiagnostic imaging changes after gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 1992;23(1):19–26.

Gallina P, Merienne L, Meder JF, Schlienger M, Lefkopoulos D, Merland JJ. Failure in radiosurgery treatment of cerebral arteriovenous malformations. Neurosurgery 1998;42(5):996–1002.

Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 1997;40(3):425–31.

Kim HY, Chang WS, Kim DJ, Lee JW, Chang JW, Kim DI, et al. Gamma Knife surgery for large cerebral arteriovenous malformations: Clinical article. J Neurosurg 2010;113:2–8.

Yang SY, Kim DG, Chung HT, Paek SH, Park JH, Han DH. Radiosurgery for large cerebral arteriovenous malformations. Acta Neurochir (Wine) 2009;151(2):113–24.

Sirin S, Kondziolka D, Niranjan A, Flickinger JC, Maitz AH, Lunsford LD. Prospective staged volume radiosurgery for large arteriovenous malformations: indications and outcomes in otherwise untreatable patients. Neurosurgery 2006;58(1):17–27.

Xiao F, Gorgulho AA, Lin CS, Chen CH, Agazaryan N, Vinuela F, et al. Treatment of giant cerebral arteriovenous malformation: hypofractionated stereotactic radiation as the first stage. Neurosurgery 2010;67(5):1253–9.

Wang HC, Chang RJ, Xiao F. Hypofractionated stereotactic radiotherapy for large arteriovenous malformations. Surg Neurol Int 2012;3(Suppl 2):S105–10.

Reinard KA, Pabaney AH, Basheer A, Phillips SB, Kole MK, Malik GM. Surgical management of giant intracranial arteriovenous malformations: a single center experience over 32 years. World Neurosurg 2015;84(6):1765–78.

Pollock BE, Kline RW, Stafford SL, Foote RL, Schomberg PJ. The rationale and technique of staged-volume arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 2000;48(3):817–24.

Ilyas A, Ding D, Robert Hixson H, Xu Z, Starke RM, Sheehan JP. Volume-staged stereotactic radiosurgery for large intracranial arteriovenous malformations. J Clin Neurosci 2017;43:202–7.

Pollock BE, Kondziolka D, Lunsford LD, Bissonette D, Flickinger JC. Repeat stereotactic radiosurgery of arteriovenous malformations: factors associated with incomplete obliteration. Neurosurgery 1996;38(2):318–24.

Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. An analysis of the dose–response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol 2002;63(3):347–54.

Pollock BE, Link MJ, Branda ME, Storlie CB. Incidence and Management of Late Adverse Radiation Effects After Arteriovenous Malformation Radiosurgery. Neurosurgery 2017;81(6):928–34.

Kurita H, Kawamoto S, Sasaki T, Shin M, Tago M, Terahara A, et al. Results of radiosurgery for brain stem arteriovenous malformations. J Neurol Neurosurg Psychiatry 2000;68(5):563–70.

Pan DH, Guo WY, Chung WY, Shiau CY, Chang YC, Wang LW. Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations. J Neurosurg 2000;93(Suppl 3):113–9.

Capitanio JF, Gallotti AL, Panni P, Snider S, Scomazzoni F, Mortini P. 204 Pediatrics Arteriovenous Malformations Treatment with Stereotactic Radiosurgery Gamma Knife: Our Institutional Experience. Neurosurgery 2016;63(Suppl 1):180.

Yen CP, Monteith SJ, Nguyen JH, Rainey J, Schlesinger DJ, Sheehan JP. Gamma Knife surgery for arteriovenous malformations in children. J Neurosurg Pediatr 2010;6(5):426–34.

Blamek S, Larysz D, Miszczyk L. Stereotactic linac radiosurgery and hypofractionated stereotactic radiotherapy for pediatric arteriovenous malformations of the brain: experiences of a single institution. Childs Nerv Syst 2013;29(4):651–6.

Rajshekhar V, Moorthy RK, Jeyaseelan V, John S, Rangad F, Viswanathan PN, et al. Results of a Conservative Dose Plan Linear Accelerator–Based Stereotactic Radiosurgery for Pediatric Intracranial Arteriovenous Malformations. World Neurosurg 2016;95:425–33.

Reyns N, Blond S, Gauvrit JY, Touzet G, Coche B, Pruvo JP, et al. Role of radiosurgery in the management of cerebral arteriovenous malformations in the pediatric age group: data from a 100-patient series. Neurosurgery 2007;60(2):268–76.

Sterzing F, Stoiber EM, Nill S, Bauer H, Huber P, Debus J, et al. Intensity modulated radiotherapy (IMRT) in the treatment of children and adolescents-a single institution's experience and a review of the literature. Radiat Oncol 2009;4(1):37.

Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. Analysis of neurological sequelae from radiosurgery of arteriovenous malformations: how location affects outcome. Int J Radiat Oncol Biol Phys 1998;40(2):273–8.

Maruyama K, Kawahara N, Shin M, Tago M, Kishimoto J, Kurita H, et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Eng J Med 2005;352(2):146–53.

Lv X, Hu X, Liu J, He H, Li Y. The influence of age and the initial clinical presentations of patients with an arteriovenous malformation on the risk of hemorrhage. Neurol India 2016;64:87–94.

Pollock BE, Flickinger JC, Lunsford LD, Bissonette DJ, Kondziolka D. Hemorrhage risk after stereotactic radiosurgery of cerebral arteriovenous malformations. Neurosurgery 1996;38(4):652–61.

Cohen-Inbar O, Lee CC, Xu Z, Schlesinger D, Sheehan JP. A quantitative analysis of adverse radiation effects following Gamma Knife radiosurgery for arteriovenous malformations. J Neurosurg 2015;123(4):945–53.

Hara M, Nakamura M, Shiokawa Y, Sawa H, Sato E, Koyasu H, et al. Delayed cyst formation after radiosurgery for cerebral arteriovenous malformation: two case reports. Minim Invasive Neurosurg 1998;41(01):40–5.

Malikova H, Koubska E, Vojtech Z, Weichet J, Syrucek M, Sroubek J, et al. Late morphological changes after radiosurgery of brain arteriovenous malformations: an MRI study. Acta Neurochir (Wien) 2016;158(9):1683–90.

Murray AL, Dally M, Jeffreys A, Hwang P, Anderson JF. Neuropsychological outcomes of stereotactic radiotherapy for cerebral arteriovenous malformations. J Clin Neurosci 2014;21(4):601–6.

Khandanpour N, Griffiths P, Warren D, Hoggard N. Prospective comparison of late 3T MRI with conventional angiography in evaluating the patency of cerebral arteriovenous malformations treated with stereotactic radiosurgery. Neuroradiology 2013;55(6):683–7.

Lee CC, Reardon MA, Ball BZ, Chen CJ, Yen CP, Xu Z, et al. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg 2015;123(1):136–44.



Most read articles by the same author(s)