A MORPHOLOGICAL STUDY OF CELIAC, SUPERIOR MESENTERIC AND INFERIOR MESENTERIC ARTERIES IN ATHEROSCLEROSIS
Abstract
the ground substance followed by visible fibre crumbling, complete dissolution and replacement by
lipid droplets and cholesterol. The objective of this study was to assess the distribution of different
atherosclerotic lesions in celiac, superior mesenteric and inferior mesenteric arteries relation to age and
sex. Methods: A prospective descriptive observation study was conducted at Mortuary of King Edward
Medical University Lahore, and Department of Pathology Allama Iqbal Medical College Lahore. A
total of 30 human autopsies were carried out. Celiac, Superior mesenteric and inferior mesenteric
arteries were taken out and opened length-wise. One to four areas of tissue were taken from each artery
for histological examination. Slides were prepared from each paraffin block. Sections were stained with
haematoxylin and eosin. Special stains were performed on sections to display each component of
atherosclerosis. Results: The fibrolipid plaques were seen in 6 cases. The complicated lesions were
present in 5 cases. Of these, 4 showed ulceration and 1 showed thrombus formation. The calcified
lesions were observed in 5 cases. The morphological changes in media and elastica were present in 4
cases. In superior mesenteric artery fatty streaks were present in 8 cases. The fibrolipid plaques were
confirmed in 5 cases. Three cases showed ulceration, 1 case showed intimal vascularisation,
haemorrhage, and thrombus formation. The calcified lesions were present in 2 cases. The
morphological changes in media and elastica were seen in 4 cases in anterior mesenteric artery. Fatty
streaks were present in 8 cases. The fibrolipid plaques were grossly observed in 6 cases. The
complicated lesions were present in 4 cases; of these, 3 cases showed ulceration, and 1 showed intimal
vascularisation and haemorrhage along with thrombus formation. The calcified lesions were present in
3 cases. The morphological changes in media and elastica were present in 4 cases. Conclusion: This
data indicates the incidence of ischemic changes in abdominal viscera due to atherosclerotic narrowing.
Keywords: Celiac, Superior, Inferior, mesenteric, atherosclerosis, arteries
Full Text:
PDFReferences
Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ.
Weight in infancy and death from ischaemic heart disease.
Lancet 1989;2:577–80.
Oliveria SA, Ellison RC, Moore LL, Gillman MW, Garrahie
EJ, Singer MR. Parent-child relationships in nutrient intake: the
Framingham children’s Study. Am J Clin Nutr 1992;56:593–8.
Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis
GJ. Compensatory enlargement of human atherosclerotic
coronary arteries. N Engl J Med 1987;316:1371–5.
Kronmal RA, Mc Clelland RL, Detrano R, Shea S, Lima
JA, Cushman M, et al. Risk factors for the progression of
coronary artery calcification in asymptomatic subjects: results
from the Multi-Ethnic Study of Atherosclerosis (MESA).
Circulation 2007;115:2722–30.
Chironi G, Simon A, Denarie N, Védie B, Séné V, Mégnien JL,
et al. Determinants of progression of coronary artery calcification
in asymptomatic men at high cardiovascular risk. Angiology
;53:677–83.
Margolis KL, Dunn K, Simpson LM, Ford CE, Williamson JD,
Gordon DJ, et al. Coronary heart disease in moderately
hypercholesterolemic, hypertensive blackand non- black patients
randomized to pravastatin versus usual care: theantihypertensive
and lipid lowering to prevent heart attack trial (ALLHAT-LLT).
Am Heart J 2009;158:948–55.
Ross. R. Atherosclerosis: the role of endothelial injury, smooth
muscle proliferation and platelet factors. Triangle 1976;15:45–51.
Dalferes ER Jr, Radhakrishnamurthy B, Ruiz HA, Berenson GS.
Composition of proteoglycans from human atherosclerotic
lesions. Exp Mol Pathol 1987;47:363–76.
Gordon RC, Julie HC. Recent advance in Molecular Pathology:
Smooth muscle phenotypic changes in arterial wall homeostasis:
Implications for the pathogensis of Atherosclerosis. Exp Mol
Pathol 1985;42:139–62.
Rahilly-Tierney CR, Lawler EV, Scranton RE, Gaziano JM.
Lawler, Cardiovascular benefit of magnitude of Low-Density
Lipoprotein Cholesterol Reduction A Comparison of subgroups
by Age. Circulation 2009;120:1491–7.
James, EC, Mashtaq, AK, Gregory C, Henderson G, Kruth HS.
Cytometric study of Cholesteryl ester containing “foam” cells. II,
analysis of aorta from cholesterol fed swine. Experimental and
Molecular Pathology 1987;46:52–63.
Smith, EB, Staples EM, Dietz HS, Smith RH. Role of
endothelium in Sequestraton of lipoprotein and fibrinogen in
aortic lesions, thrombi and Graft Pseudo-intimsas. Lancet
;2(8147):812–6.
Hoff HF, Heideman CL, Gaubatz JW, Scott DW, Titus JL, Gotto
AM Jr. Correlation of Apolipoprotein B retention with the
structure of atherosclerotic plaques from human aorta: Lab Invest
:38:560–7.
Lewis, JG, Richard G. Taylor BS, St Clair RW, Cornhill JF.
Endotheilal surface characteristics in Pigeon coronary artery
atherosclerosis. Lab Invest 1982; 46(2):123–38.
Elesber AA, Redfield MM, Rihal CS, Prasad A, Lavi S, Lennon
R. Coronary endothelial dysfunction hyperlipidemia are
independently associated with diastolic dysfunction in humans,
Am Heart J 2007;153:1081−7.
Kanazawa T, Izawa M, Kaneko H, Onodera K, Metoki H, Oike
Y, et al. Comparison among Lipid constituents in Native LDL,
ultra water soluble LDL, and Vessel wall and their significance in
atherosclerosis. Experimental and Molecular Pathology
;47:166−74.
Rivera JJ, Nasir K, Katz R, Takasu J, Allison M, Wong ND, et
al. Relationship of Thoracic Aortic Calcium to Coronary
Calcium and its Progression (from the Multi-Ethnic Study of
Atherosclerosis [MESA]). Am J Cardiol 2009;103:1562–7.
Refbacks
- There are currently no refbacks.
Contact Number: +92-992-382571
email: [jamc] [@] [ayubmed.edu.pk]